Electric Charge Activity

D	n	rt	- 1	Γ
г	(1			

	1.	Electricity" PhET simulation.
	2.	Check "Show all Charges." Nothing else should be checked.
		Rub the balloon on the shirt
		What overall charge does the balloon now have?
	5.	What overall charge does the shirt now have?
	,	
(6.	What happens when you drag the balloon away from the shirt and
	7	let it go? Why?
	<i>'</i> .	vviiye
į	8.	Reset.
,	9.	Check "Wall."
	10	. Rub the balloon on the shirt again.
	11.	What happens to the negative charges in the wall when you move
		the balloon near it?
	40	NATI - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	12	. What happens to the positive charges in the wall when you move
		the balloon near it?
	13.	. Why don't all the positive charges move toward the balloon?
	14	. Hold the balloon in between the wall and shirt and release it
	15	. Why doesn't the balloon just stay in the middle?

Part II

- 1. Click <u>HERE</u> to download and open the "John Travoltage" PhET simulation.
- 2. Experiment by rubbing Travolta's foot against the carpet and touching his finger to the door handle.
- 3. Now try building up charge while his finger is on the door.

4.	What happens?					
	Move his finger away again and build up another charge. Let's say that the blue charges which are built up on John are electrons.					
6.	When Travolta's finger is near the door knob, what do you think happens to the electrons currently in the metal door knob?					
7.	This induces a local charge in the door knob.					
8.	Why are shocks worse when you touch conductors rather than insulators?					
9.	If you take your hat off on a dry winter day, sometimes your hair will stand up. Explain this phenomenon.					

Part III

- 1. Click <u>HERE</u> to download and open the "Electric Field Hockey" PhET simulation.
- 2. The goal of this game is to get the black positive puck to go in the goal.

4.	Clear each time you try a new set up. Reset if you want to retry your current set up.
5.	How can you set up just one positive charge to score a goal?
6.	Change the mass and see what happens.
7.	What happens when the mass is smaller?
8.	Why does the mass affect the speed if it is not a part of the electric force equation (Coulomb's Law)?

- 9. Now play the game. You can practice a little bit if you want.
- 10. Set "Difficulty" to 1, then 2, and then 3. Hint: Checking the "Field" box might help you.