Some Good Things to Know When Working Free-Fall/Projectile-Motion Problems

Notes:

- We are assuming wind resistance is negligible.
- We are labeling the horizontal direction as the x-direction.
- We are labeling the vertical direction as the y-direction.
- θ is measured from the $+x$-axis.

1. The acceleration in the \boldsymbol{y}-direction is $9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ downward.

$$
\vec{a}_{y}=9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s} \downarrow
$$

2. The acceleration in the x-direction is 0 .

$$
\vec{a}_{x}=0
$$

3. The initial velocity in the x-direction is equal to the final velocity in the x-direction.

$$
\vec{v}_{i, x}=\vec{v}_{f, x}
$$

4. Because the initial velocity can be broken down into two perpendicular components, we can use the Pythagorean Theorem to find any component given the other two.

$$
\left(v_{i}\right)^{2}=\left(v_{i, x}\right)^{2}+\left(v_{i, y}\right)^{2}
$$

5. $\vec{v}_{i, x}=v_{i} \cos \theta \bar{x}$
6. $\vec{v}_{i, y}=v_{i} \sin \theta \bar{y}$
